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The propagation of gravity fronts of high density ratios has been studied experimentally 
(exchange flow) and by computer simulation. Non-Boussinesq fronts are known to 
occur in certain safety problems (chemical spills and fires), and we have investigated 
seven gas combinations giving density ratios from near unity to well over 20. The 
results are presented in terms of a density parameter p* which remains finite both in 
the weak (p* = 0) and the strong @* = 1) limit. The front velocities, measured by 
means of hot wires, are found to fall on two distinct curves, one for the slower light- 
gas fronts and one for the faster heavy-gas fronts. Two fractional depths, @ = f (lock 
exchange) and @ = +, have been investigated in detail and results for the interesting 
case @ + 0 have been obtained by extrapolation. To aid in the extrapolation and for 
comparison, all experimental (and some intermediate) cases have been simulated by 
means of a general purpose CFD-code (PHOENICS). Good agreement is found for cases 
without convergence problems, i.e. for heavy-gas fronts of density ratio less than 5.  
Further information on frontal shape etc. has been obtained from visualization. The 
extrapolations to infinite depth indicate a limiting speed for both the heavy- and light- 
gas fronts close to the values predicted from shallow-layer theory for the analogous 
dam-break problem. 

1. Introduction 
The propagation of intrusion fronts is a topic of prime interest in geophysics and 

hydraulics, most often in connection with gravity currents and lock-exchange prcblems. 
A general review will be found in the recent book by Simpson (1987) and one for 
research on dense-gas fronts in Britter (1989). In certain applications concerned with 
safety, the density ratio across the front can be rather high, and the usual relation for 
the front velocity appears to give unreasonable results. On denoting the densities of the 
heavy and light fluids with indices 2 and 1 respectively, the thickness of the intruding 
layer h and the acceleration due to gravity g ,  the relation usually specified is 

using common nomenclature. The controversial point relates to the use of p1 in the 
denominator. For most natural flows the density difference is so small that it does not 
matter much. But for accidental releases of hazardous gases that are heavier than air, 



670 H .  P .  Grobelbauer, T.  K .  Fannelep and R. E.  Britter 

in common use in ?he chemical process industries, a density ratio of 2 to 5 would be 
of interest. In that case the use of g' or the alternative g" defined by 

g" = g- P2 - P1 
Pa 

leads to quite different results. Fay (1982) has drawn attention to this controversy as 
'one of the unresolved problems in heavy gas dispersion'. He has pointed out that the 
use of g' can lead to an acceleration exceeding g for high (but not unusual) density 
ratios, clearly an unreasonable result. 

High density ratios can occur, not only for accidental releases of industrial gases but 
also for the spreading of hot fire gases under ceilings, another safety problem. The 
easiest way to produce a front of high density ratio would be to release a light gas such 
as helium under a ceiling. In air this would produce an intrusion front of density ratio 
7, sufficient to indicate which alternative, g' or g", would give better prediction. Already 
the Thorney Island heavy-gas experiments (1982-83) have used density ratios in excess 
of four (Freon 12 in air, McQuaid 1985). But the high-aspect-ratio release produced so 
much mixing in the initial slumping process prior to the establishment of a clear density 
front that it is difficult to draw a firm conclusion from the data. 

It appears that the data available prior to 1991 on the propagation of density fronts 
on level surfaces pertain only to flows of low density ratio for which the Boussinesq 
approximation is applicable. (An exception would be snow avalanches and other two- 
phase flows down slopes, but here many additional parameters would be of 
importance.) Most experiments so far have been performed with liquids, usually water 
and salt-in-water solutions. For such fluids a high density ratio cannot be easily 
produced and this is perhaps why the controversy associated with the frontal condition 
has not been settled. 

Recent research on chemical process safety has focused on accidental gas releases, 
both single- and two-phase (vapour/droplet) flows. To obtain information applicable 
to such problems, we have tried to produce moving fronts of very high density ratio 
by releasing gases of widely different densities in a large gas-tight closed volume (a 
rectangular channel). In an open room we can attain, as noted, only a ratio of 7 
(helium/air) or 4 (Freon 12/air) at moderate cost and in safety. The most exotic (and 
expensive) Freon derivative, i.e. Freon RC 3 18, is seven times heavier than air. Releases 
of hydrogen in air would produce an even higher density ratio (about 14), but its use 
appears too hazardous in practice. 

The present approach produces a maximum density ratio in excess of 20 when the 
environmentally benign Freon R22 is released in helium inside a closed volume, and it 
allows a wide range of density ratios to be studied between this limit and the low values 
for which the Boussinesq approximation holds. The drawback is that the set-up 
produces an exchange flow rather than an unbounded gravity intrusion. A simple 
relationship between these flows exists only for small density differences. 

2. Theoretical considerations 
2.1. The diferent interpretations of the frontal condition 

The simplest idea is that the motion of the intrusion front is driven by the excess 
hydrostatic pressure and resisted by the increased pressure over the frontal region of 
the body formed when the intruding fluid is considered enveloped by an impermeable 
rounded shape. The excess hydrostatic pressure in the head is (p2-p1)gh whereas the 
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opposing stagnation pressure is :pol u2. For similar flows we would expect a constant 
ratio between these pressures so that 

as already indicated in (1 a) .  
On assuming these pressures to be equal, a more speculative assumption for real 

flows, the constant k becomes 4 2 ,  the same result as that obtained on using the 
Bernoulli equation along the dividing streamline. 

To derive the frontal velocity for the lock-exchange problem, it is usual to assume 
that energy is conserved and that the flow is symmetric. (The latter assumption is 
clearly not fulfilled in the flow photographs published; e.g. in Simpson 1987.) The 
result obtained (see Yih 1965) is simply 

By making use of the Boussinesq assumption, pz+pl w 2p,, we obtain one half the 
value of the gravity current. To put it differently: in the limit of small density 
differences, the two fronts move away from one another at the speed of a gravity 
current evaluated using the loss-free (Bernoulli) value of the constant k .  But we can 
also make another interpretation. On rewriting the relative frontal velocity as 

the result can be seen to depend on the mean value of the densities p z  and pl, reflecting 
the importance of the inertia of both fluids. 

A third and rather different interpretation of the frontal condition is obtained when 
the motion of the heavy (or intruding) fluid is considered on the basis of shallow-layer 
theory. From the relevant equations for this layer, one can deduce a characteristic wave 
speed 

(3) 

as shown by Fannelsp & Jacobsen (1983). Analytic (similarity) as well as numerical 
solutions of the shallow-layer equations for instantaneous releases show that once the 
whole layer is set in motion, the largest layer depth occurs at the front. A front with 
velocity uw, will not be overtaken by disturbances within the layer, and a frontal 
condition of form (3) leads to a consistent formulation. Solutions analogous to those 
of interest for high-density-ratio fluid fronts, are known from the theory of spreading 
oil slicks (Fay 1969; Fannelsp & Waldman 1971). The spread is here driven by gravity 
and resisted by the inertia in the layer. In contrast, the flow model which is the basis 
for (l), implies a motion driven by gravity but resisted by external drag; the inertia of 
the moving layer is not considered. All three alternatives, (I), (2) and (3), are loss free 
in the sense of mechanical energy conservation, and possible losses (mixing, wave 
breaking, dissipation) are usually accounted for by adjusting the factor k in accord 
with experimental results. 

In the literature it is often implied (but not always clearly expressed) that the 
intrusions of a heavy fluid on the floor or of a light fluid under the ceiling represent not 
only analogous flows but in reality identical flow problems. This could be true for small 
density differences (although many flow photographs indicate otherwise), but it is 
definitely not true for non-Boussinesq fronts. This can be verified by considering the 
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upper limits in frontal speed possible for the two types of flows. The most extreme case 
of a light fluid intruding under a ceiling would be the case considered by Benjamin 
(1968), i.e. finite external density and zero density in the intruding cavity. Expressed in 
terms of Froude number, the limit velocity would be 

where up is the front velocity and h the half-depth of the rectangular channel. (For 
other geometries analogous results are obtained.) 

For a heavy fluid spreading on the floor, the most extreme case would be a fluid of 
finite density spreading in vacuum. There would be no external resistance, and the 
front velocity would depend on how fast energy can be extracted from the initial 
configuration. This rate is limited by the wave velocity in the (shallow) layer, and the 
corresponding solution is known as ‘the breaking of a dam’ (Stoker 1957 or 
Henderson 1966). In terms of Froude number this solution can be written as 

and it is seen to be four times higher than the light-fluid limit for the same geometry. 
It is interesting to note that the expression for the front velocity given by (2) gives the 
correct form of the frontal velocity in all three limits considered, for weak as well as 
strong fronts. We will henceforth attempt a correlation of our experimental results for 
non-Boussinesq fronts in terms of p* us. Froude number where 

(We note that the parameter p* also occurs in Lamb’s (1945, p. 370) equation for the 
wave speed at the common interface between two fluids of different densities, in the 
limit of infinite layer depth.) The discussion so far assumes constant density in both 
fluids. For miscible fluids and not too low Reynolds numbers there will be mixing so 
that the intruding flow is stratified. For an intrusion under a ceiling the density 
increases downward, due to mixing. The excess hydrostatic pressure, which drives the 
flow, has its maximum value at the ceiling where the inner density is lowest. As a result 
the upper layers move faster than the lower denser layers, and we observe an elongated 
wedge-like head. For the intrusion of a heavy fluid both the density and the excess 
hydrostatic pressure have their highest values near the floor, and we observe the blunt 
gravity current familiar from many experiments. These differences in frontal shape are 
most pronounced for strong fronts. (Propagating density fronts can also be produced 
using immiscible fluids with very different properties, density as well as viscosity and 
surface tension. Without mixing and with little or no internal circulation, the fronts can 
exhibit shapes rather different from those discussed.) The shallow-layer assumption is 
naturally suspect in the frontal region, in particular for the blunt fronts associated with 
an intruding heavy fluid. The front can under certain conditions develop into a strong 
vortex. Most observations of an organized vortex motion pertain to heavy-gas fronts 
(where spinup occurs more easily than for the denser liquids), and for relatively large 
density differences or for releases with initially high potential energy. It is not possible 
at present to state when a vortex will develop, but once present it will induce a forward 
velocity independent of the density ratio across the front (Britter 1989). 
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It is remarkable that, after many years with no apparent activity, in late 1991 two 
papers on non-Boussinesq fronts appeared. Our own contribution (Kunsch et al. 1991) 
proposed a unifying correlation for light- and heavy-gas fronts in terms of p* with 
recommendations for its use in safety problems, but in this review of heavy-gas 
research at ETH no details were given. As the present paper with a more detailed 
exposition was prepared for publication, the new study of Keller & Chyou (1991, 
referred to herein as K&C) appeared. It includes, in addition to experiments with 
fronts of high density ratios, primarily liquids, a mathematical analysis of the internal 
hydraulics of the lock-exchange problem. K & C  are mainly concerned with the 
hydraulics of internal flows, e.g. the case of a perfect fluid of constant density driving 
another fluid of different density through a closed horizontal channel. For their 
experimental work they made use of a very small channel (40 x 40 mm2 and length 
500 mm), which allowed visualization of the complete flow field, but the set-up also 
limited the accuracy of the front-velocity measurements, in particular for gas-in-gas 
intrusions. By judicious choice of fluids, K&C obtained density ratios as high as 3.3. 
In addition they combined the gases SF, and air (density ratio 5 )  and SF, and helium 
(density ratio 36) but they did not report any velocity data for heavy-gas fronts. The 
problem of particular interest to them was the purging of a liquid fuel line by means 
of pressurized air. In contrast, our main interest lies in the large-scale turbulent fronts 
found in certain safety problems as well as in many geophysical flows. To simulate such 
flows, we have chosen the largest scale possible. The use of exotic and expensive gases 
limits the practical volume of the test channel, but the volume chosen (lo3 times that 
of K&C) is believed sufficient to produce the flow features typical of turbulent 
fronts. The results presented herein give new information on the full range of gas 
intrusions, heavy as well as light, for lock-exchange flows. In addition we present data 
and information on the case of primary interest to us, i.e. the motion of strong fronts 
in an ambient of unlimited depth. 

3. Experiments 
The experiments include both a series of lock-exchange flows with gases of different 

densities in a closed channel of square cross-section, and a complementary series of 
exchange flows where the fractional depths of the counter-flowing currents are reduced 
to one-third of that for the classical lock-exchange flow. It was hoped that this second 
series would allow an extrapolation to the case of prime interest in applications, when 
the depth of the intrusion is much smaller than that of the ambient. 

The experimental set-up is illustrated in figure 1 (a,  b).  A closed spreading channel of 
cross-section 0.3 x 0.3 m2 and total length of either 3.8 or 4.5 m is divided into 
chambers of unequal size separated by a quick-opening gate. (Only one side could be 
fully instrumented. The unsymmetrical set-up reduces the volume of gas required, as 
gas represents a major cost item.) The chamber lengths are 3.0 and 0.8 m (or 1.5 m) 
respectively. The chambers were filled with gases of different densities, and to this end 
they were equipped with valves at the endwalls. A gas heavier than air was supplied 
through the low valve and air let out through the top valve, and vice versa for gases 
lighter than air. The concentration of gas in the chambers was monitored during the 
filling process and prior to a test it would be above 95% for the large chamber and 
above 97% for the smaller chamber. This introduces a maximum error in p* (the 
correlation variable) of less than 1 YO relative to the nominal value. A higher purity 
would have led to considerable loss of gas and to higher cost without substantial 
improvement in the results obtained. It was necessary also to monitor the temperature 
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FIGURE 1. (a) Experimental arrangement. (b) Gate geometries, 

drop associated with the expansion from bottle pressure to the atmospheric value. 
Prior to a test the temperature difference, relative to the ambient, was always less than 
2 "C for the results reported herein. 

The manually opened gate was suspected at first to be a major contributor to 
experimental scatter. But the time required to open the gate was very short in 
comparison with the characteristic flow times for the moving gas and the experiments 
showed good repeatability. (Gate velocity: 3 4  m/s, flow velocity: 0.2-1.8 m/s.) The 
velocity of the moving front was measured by means of seven hot-wire probes placed 
along the floor (heavy-gas front) or along the ceiling (light-gas front) of the larger 
chamber. These probes were used only as 'trip wires ' to give the time of arrival of the 
density front. 

The front panel of the larger chamber was made of transparent material to allow 
visualization. Of particular interest were, in addition to observations of the moving 
fronts, the depths of the moving layers. Some initial visualization trials were made 
using smoke from commercial smoke pellets. These pellets, however, generated smoke 
by burning and the heat released changed the density distribution. A second method 
based on the evaporation of oil from a vertical wire, suddenly heated by a timed 
electrical pulse, proved more successful (Batill & Mueller 1981). A drawback of the 
rather large experimental scale is that only one front and part of the opposing flow are 
visible in a single exposure. But it is apparent from the photos obtained that the flow 
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FIGURE 2. Propagation velocity of (a) dense-gas and (b) light-gas intrusion fronts. 

Gases 
COJArgon 
Argon/Air 
R22/Argon 
R22/Air 
Air/Helium 
Argon/Helium 
R22/Helium 

Density ratio 

1.11 
1.38 
2.18 
2.99 
7.23 
9.93 

r = P2IP1 

21.6 

0.22 
0.40 
0.61 
0.71 
0.87 
0.90 
0.95 

TABLE 1. Gas combinations used for lock-exchange and exchange-flow experiments 

is not symmetric and that the light-gas fronts are less blunt and appear more stable 
than the heavy-gas fronts, for the same density ratio. Tests were conducted with 
combinations of five different gases : air, argon, carbon dioxide, Freon 22 and helium, 
producing nominal density ratios from 1.1 I (carbon dioxide in argon) to 21.6 (R22 in 
helium). An overview is given in table 1. Each gas combination was tested in two 
configurations : first with the heavy gas in the smaller chamber and the light gas in the 
larger and then vice versa. 
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FIGURE 3(a,b). For caption see facing page. 
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FIGURE 3. Visualization by smoke-wire technique: (a) helium intrusion in air, lock-exchange 
experiment; (b) air intrusion in helium, lock-exchange experiment ; (c) helium intrusion in R22, lock- 
exchange experiment. 

3.1, Lock-exchange experiments 
For the smallest density ratio p2/p1 = 1.1 1, the Boussinesq approximation should be 
applicable and we would expect near identical results for light- and dense-gas fronts. 
Increasing differences would be expected for the six other gas combinations 
investigated, with density ratios up to 21.6. In figure 2 (a, b) the measured time us. 
distance for the propagating fronts are shown. In the trial with R22 in argon 
(p2/p1 = 2.18) a significant difference between the fronts is observed and the dense-gas 
front has the higher velocity, as expected. The difference is most pronounced for the 
combination helium and R22 giving a speed ratio in excess of 2. The distance us. time 
curves are remarkably linear with good repeatability and little scatter in comparison 
with known experimental results obtained with liquids. The electronic (hot-wire) 
detection of the front appears more accurate than the optical tracking of dyed fluid 
fronts, used in previous investigations. Turbulent fronts have certain non-uniformities 
(clefts and overhangs) which would be expected to show up in the velocity 
measurements in the form of slight irregularities. The linearity of the (x ,  t)-curves also 
indicates that the viscous effects are small and that the endwalls have little or no 
influence on the results. The latter point is verified further by the fact that a reversal 
of the flow directions had no apparent effect on the results. The effect of the initial 
acceleration and the finite gate-opening time are apparent only in the region upstream 
of the first measurement station. An exception is the case with the highest density ratio 
where the dense front appears to accelerate between the first and second station also. 
(The speed measurements used in our correlations represent data only in the linear 
range.) 

Additional information on the flow comes from visualization. Figure 3 (a)  shows the 
flow streaks originating from the smoke wire for a helium intrusion into air, initially 
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at rest. The limits of the wedge-shaped intrusion as well as the opposing air flow are 
clearly seen. There appears to be little mixing. The faster-moving air intrusion into 
helium at rest (figure 3 b)  appears more rounded, as expected. The streaklines indicate 
a more turbulent structure than in the case of the light-gas front and possibly also a 
dissipative jump. The elongated shape of the light-gas front is even more pronounced 
at higher density ratios. Figure 3(c)  shows a helium intrusion into Freon R22. 
Superimposed are the theoretical frontal slope (60") as predicted by von Karman 
(1940) and the complete contour of the interface according to the theory of Benjamin 
(1968) for cavity flow. The agreement is reasonable in view of the fact that the picture 
shows streaklines, as noted, and not instantaneous streamlines. 

3.2. Exchange-flow experiments 
The set-up for the exchange-flow experiments differed in two ways from those 
discussed. The barrier separating the two gases was divided into a fixed central part and 
two moving gates which opened only partially, leaving gaps of 50 mm above the floor 
and under the ceiling of the channel (figure 1 b). When rebuilding the gate section, we 
also extended the short chamber from 0.8 to 1.5 m in length with no change in cross- 
section. The mechanical coupling between the upper and lower moving gates 
guaranteed equal opening time and speed. The velocity measurements produced results 
analogous to those for lock-exchange flows, but with more scatter. We attribute this 
to viscous effects as the boundary-layer thickness relative to the layer depth is increased 
by a factor of three in comparison with the lock-exchange case. Flow visualizations of 
the region near the gate did not give evidence of any jump phenomenon; the gravity 
intrusion showed near constant height with a raised head due to local mixing. As the 
excess hydrostatic head is not influenced by vertical mixing, we have used the unmixed 
fluids and the geometric height in our correlations, i.e. @,-pl)gh. 

4. Numerical calculations 
All cases investigated have been studied also by means of the general purpose CFD- 

code PHOENICS. This code is widely used and available at major universities and 
research institutions (Rosten & Spalding 1987). The boundary and initial conditions 
are simple and well defined for numerical calculations, but the turbulence and mixing 
characteristics are perhaps less suitable for a general-purpose code. Inasmuch as 
mixing, turbulent entrainment and other loss processes are of secondary importance in 
our case, we have made use of the default procedure for the mass exchange input 
specification. The rate of mass transfer across the cell boundaries is here given as 
Cpln,n, V (kg/s), where n, are the volumetric fractions of species i, p1 and V the cell 
density and volume respectively. To neglect mass transfer by letting C = 0 would be 
acceptable for the purpose of the present invetigations, but it leads to serious 
convergence problems. The value C =  100 has been used in all our calculations. 
(Converged solutions could not be obtained for C smaller than this value.) To 
'optimize' the value of C in comparison with our experimental results was not practical 
in view of the very long computing time required for each case (up to 200 minutes of 
CPU-time on a Cyber CDC 932). 

The convergence problem also required a finite amount of gas of both species to be 
present initially in both chambers; we have specified 99.9 YO of the major and 0.1 YO of 
the minor constituent. Turbulence was modelled by means of the standard k-e 
procedure with a logarithmic wall function to account for the boundary layer. In the 
specification of the turbulent viscosity, u, = c,c,k2/e, the coefficients used were 
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t = 3.0 s 

f = 2.5 s I 

FIGURE 4. Isoconcentration lines for lock-exchange flow: (a) argon front in air, calculation grid, 
76 x 30 cells; (b)  helium front in argon, calculation grid, 38 x 15 cells; (c) helium front in R22, 
calculation grid, 19 x 10 cells. 

cp = 0.5478 and c, = 0.1643 as proposed by the program developers. Three grid sizes 
were tried: a fine grid with 76 x 30 cells giving a spatial resolution of 0.05 m (x- 
direction) and 0.01 m (y-direction), a medium size grid of 38 x 15 cells and a coarse grid 
with only 19 x 10 cells. The coarse grid was needed to obtain convergence for the 
highest density ratio. Figure 4(a-c) shows the results obtained for the lock-exchange 
flows. (The contours shown represent the 10% isoconcentration lines.) At the times 
shown, the right-running fronts have been reflected from the endwall of the smaller 
chamber, so that only the left-running fronts are comparable with those expected in a 
lock-exchange experiment. The increasing elongation of the wedge-shaped light-gas 
front with higher density ratios appears to be confirmed by the calculation, which also 
shows the heavy-gas fronts to be more rounded. The front velocity is also rather well 
predicted for the light-gas fronts over the complete range of density ratios, whereas the 
predictions for the heavy-gas fronts break down for p* > 0.6, as seen in figure Sf. Quite 
similar results are obtained for the exchange flows, as shown in figure 5(a-c). Species 
diffusion doubles the height of the intruding layer, as seen in figure 5,  but this does not 
reduce the excess hydrostatic pressure and therefore does not affect the frontal speed. 
The velocity prediction appears to be more reliable than other quantities and features 
of the internal flow structure calculated by this numerical code. 

t The code is primarily intended for diffusion problems, whereas the heavy-gas intrusion flows for 
large values of p* are increasingly dominated by wave processes. A comparison between the 
interfacial wave speed, calculated from Lamb (1945, p. 370), and the frontal speed (experiments) show 
that they are nearly equal at p* = 0.7 (lock-exchange case). 
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1 = 3.0 s 

I t = 2.5 s 

t = 1.5 s (4 

FIGURE 5 .  Isoconcentration lines for exchange flow: (a) argon in air, calculation grid, 45 x 18 cells; 
(b) helium in argon, calculation grid, 45 x 18 cells; (c)  helium in R22, calculation grid, 30 x 12 cells. 

5. Discussion 
A compact form of representation is obtained when the velocity data, non- 

dimensionalized with (gh)f ,  where h = #, are plotted as a function of the density 
variable p* = [(p2 -pl)/G2 +p,)]f as shown in figures 6, 7 and 8. This representation is 
valid both in the weak (Boussinesq) and strong limit (cavity flow or zero 
counterpressure). The results obtained fall on two distinct curves : one representing the 
light-fluid fronts and the other the heavy-fluid fronts. Both branches coincide in the 
limit of vanishing density difference @* = 0). 

For ease of reference, we have derived a relationship between Froude number 
Fr = up/z/(gh): and fractional depth @ = h / H  with the density variable p* as 
parameter, in accord with Simpson (1987). B y  
pressure gradients or viscous drag, we obtain 
momentum balance the following relations : 

assuming horizontal flow and no 
from continuity and the integral 

(heavy-fluid intrusion), (7 a) 

(light-fluid intrusion). (7 b) 

We will first consider the results obtained for the lock-exchange experiments (@ = i). 
The representation Froude number u,/(gh)i us. p* results in smooth curves over the full 
range of the density variable p* as shown in figure 6(a). The lower branch (light-fluid 
intrusion) appears consistent with Benjamin’s value in the limit of p* +. 1, and the 
intermediate points moreover fall close to the predictions from (7b). The common 
slope for both branches for p* + 0 is in reasonable agreement with the theoretical value 
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FIGURE 6. (a) Resulting Froude numbers of light- and dense-gas fronts for the complete range of 
density ratios. (b) Comparison of present data with theory and data from K&C. Lock-exchange flow, 
@ = L  

2' 

of 1 as predicted by Yih (1965). For the heavy-fluid intrusion, the Froude number limit 
as p* --f 1 is not obvious. We have chosen for our fit to use the limit for the dam-break 
problem, i.e. Fr = 22/2 (Stoker 1957 or Henderson 1966). This solution is obtained 
from the shallow-layer equations and the receiving medium has unlimited depth. While 
perhaps not quite correct, the value 2 4 2  comes close to what appears to be the best 
value, as will be seen later. A theory based on the balance of the hydrostatic pressure 
difference and the external drag predicts an infinite Froude number for strong dense 
fronts, (7a). But for such flows the wave velocity in the dense layer becomes the 
relevant parameter, as already noted. 

Figure 6(b)  shows data and a theoretical prediction for (part of) the strong branch 
published by K & C. Only for small to moderate density ratios do their values come 
close to our results as represented by the numerical fit. For density ratios near the 
strong limit, their results for the light-fluid intrusion fall about 15 % below our values 
and the theoretical (Benjamin) limit. K & C give no experimental values for heavy-fluid 
fronts near the limit p* --f 1, but a theoretical curve can be derived from the charts in 
their paper. In the intermediate range of p*, this theory predicts much higher velocities 
than those measured. K& C's theory for strong gravity currents and the dam-break 
theory are closely related. Both are based on the shallow-layer equations, and the 
strong front has zero height in both models. This front is connected with the receding 
flow through a region of expansion waves and increasing flow depth. For the dam- 
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FIGURE 7. Comparison of calculated results with the measured data for exchange flow, @ = +, 

break problem, the expansion region reaches all the way to the free surface (here, the 
top of the channel) whereas K & C argue that the receding flow is a cavity flow. By 
matching the wave region with Benjamin's solution, they obtain in the strong limit the 
value Fr = 2.707, only slightly below the value for the dam-break problem as indicated 
in figure 6(b). At intermediate density ratios, the results follow (7a)  for p* < 0.749. Our 
visualization (figure 3 c),  gives support to K & C's assumption that in the strong limit 
the receding flow is a Benjamin cavity and not a simple expansion wave. The velocity 
of the receding wave (dam-break) is twice the value calculated from (7b) and measured 
in the limit p* + 1 for the light-fluid intrusion. But this is true only for lock-exchange 
flows. In a medium of infinite depth, the dam-break problem appears to give the correct 
solution for both branches in the limit p* --f 1. 

For further support of this view, we turn to the results for the second experiment, 
an exchange flow of fractional depth CP = $. The experimental results and a numerical 
fit are shown in figure 7. The velocities are seen to be higher, as expected, and the 
experimental scatter more pronounced, than in the case of the lock-exchange problem, 
figure 6(a) .  Also included in figure 7 ,  are the calculated results from the PHOENICS code. 
Quite consistent results are obtained over the full range of density ratios for the light- 
gas intrusion, whereas for p* > 0.6 a breakdown appears to occur for the strong 
branch. The accuracy and validity of the code in the range considered is supported by 
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FIGURE 8. Comparison of calculated results with the measured data 

for lock-exchange flow, @ = +. 

the results obtained for the lock-exchange problem, figure 8, at the least for the light- 
gas intrusions. 

One hoped for end use of the exchange-flow results would be as an aid in the 
extrapolation from finite (@ = f ,  @ = i) to zero fractional depth. In figure 9 we have 
plotted the non-dimensional frontal velocity, for light- as well as heavy-gas intrusions, 
in terms of fractional depth 0 = h /H.  We have included the known limits of interest : 
Benjamin’s value for @ = f ;  and for @ = 0 and, for the dam-break problem, the 
velocities of the front and the receding wave. It is difficult to label the closely spaced 
data points in figure 9 and for ease of interpretation the values are also tabulated in 
table 2. 

The straight-line extrapolation for our highest density ratio (R22 in helium) gives a 
value only slightly below the analytical value for the dam-break problem. This is 
somewhat surprising as it is known that the limit velocity of this front of zero height, 
is considerably reduced when friction is taken into account (Dressler 1952). (But we 
note that the limit 0 = 0 can be interpreted in two different ways. For the dam-break 
problem, the depth of the dam is finite and the front has zero height. For a heavy-gas 
intrusion, the front has finite height but the receiving medium is of infinite depth.) The 
scatter introduces some uncertainty in the extrapolated results. For the three cases, 
argon in CO,, helium in R22 and R22 in helium, extrapolations according to (7a, b) 
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PHOENICS: - 
Dense-gas fronts 0 

Light-gas fronts A 
Extrapol. for @ = 0 0 
Dam-break 

Front 0 
Receding wave 0 

Benjamin (1968) 0 
Equation (7 a) . . . . . 
Equation (76) 
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FIGURE 9. Froude number as function of fractional depth @ (numerical values in table 2). 

Dense-gas fronts Light-gas fronts 

Measured PHOENICS Measured PHOENICS 
Extrap. Extrap. 

- 1 - 1 - 1 - 1 - 1 - 1 - 1 @ a  f 0  2 3 6 2 f 0  2 3 6 

P* 
0.22 0.18 0.26 0.30 0.16 0.20 0.26 0.18 0.26 0.30 0.16 0.19 0.25 
0.40 0.36 0.57 0.68 0.33 - 0.50 0.33 0.46 0.53 0.31 - 0.47 
0.61 0.63 0.97 1.15 0.58 - 0.85 0.48 0.75 0.88 0.47 - 0.75 
0.71 0.76 1.22 1.45 0.69 - 0.95 0.53 0.77 0.89 0.54 - 0.87 
0.87 1.09 1.59 1.84 0.76 - 0.97 0.58 0.88 1.03 0.63 0.78 1.05 
0.90 1.19 1.77 2.06 0.80 - 0.97 0.61 0.95 1.12 0.64 - 1.09 
0.95 1.52 2.36 2.78 0.85 - 0.83 0.66 1.04 1.22 0.66 0.84 1.13 

TABLE 2. Measured, extrapolated and calculated Froude numbers as function of fractional depth 
@ and density parameter p* .  (A graphical representation is given in figure 9.) 

are also indicated. The curves are adjusted with a reduced p* in order to fit the 
measured values for @ = f. The corresponding values for Q, = $ fall somewhat below 
the adjusted theoretical curve due to the greater importance of friction in the exchange- 
flow experiment. The simplifying assumptions used in deriving (7a, b) could also be 



Propagation of intrusion fronts of high density ratios 

3.0 

2.5 

2.0 

Fr 1.5 

1 .o 

0.5 

0 0.2 0.4 0.6 0.8 1.0 

P* 
FIGURE 10. Extrapolated Froude number as function of p* for @ = 0. 
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restrictive. For this reason a straight-line extrapolation from @ = and @ = to @ = 0 
has been chosen. To check on the linearity of the I+(@)-curves, it was attempted to 
obtain 'exact' intermediate values of @(@ = i, @ = 5, @ = f and @ = A) by means of 
the PHOENICS code. The calculation for @ = &, did not converge and the results for 
@ = + appeared not fully reliable. Overall, the calculation indicated a weak curvature 
in Fr(@) as seen in figure 9 for the cases helium in R22 and argon in CO,. 

Figure 10 shows the tentative results of the extrapolations for @ = 0, based on our 
experimental results. The curve fits of the extrapolated data indicate that in the strong 
limit the dense-gas Froude number approaches the dam-break value. It also appears 
that the velocity of the receding wave represents an upper limit for light-gas fronts of 
high density ratio in a medium of unbounded depth. A description of the flow based 
on shallow-layer theory appears to be in reasonable agreement with the data. For small 
p* both branches coincide near the origin with a slope of about 2, which is the predicted 
value for a weak front ((1 a, b) with k = 4 2 ) .  

6. Conclusions 
The results obtained show that gravity fronts of high density ratio differ considerably 

in speed of propagation and shape in comparison with the more familiar (Boussinesq) 
fronts with density ratio close to unity. The representation of Froude number, up/(gh)', 
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us. the density parameter p* = [(p2 - p l ) / ( p 2  +p,)fi, gives well-defined curves over the 
complete range of density ratios for both the heavy- and the light-fluid fronts. The 
rather large difference in speed of propagation between these configurations, at all 
fractional depths investigated, appears to be a new result not recognized in two 
important applications : fire research and the dispersion of dense (hazardous) 
chemicals. For lock-exchange flows, our results for the light-fluid intrusion agree at one 
end of the range @* = 1) with Benjamin’s result for the propagation of a cavity and 
at the other (p* = 0) with the known value for small density differences. In between, 
our data agree well with results predicted from integral continuity and momentum 
balances. The heavy-fluid fronts can be predicted only for low to moderate density 
ratios. 

The results for small fractional depths (@ = +) are similar to those for the lock- 
exchange case. Different curves are again observed for the light- and heavy-fluid fronts. 
Both experimental and numerical results (from the PHOENICS code) have been utilized 
in our extrapolation to the case of infinite depth, @ --f 0. This is the case most likely to 
be of interest in practical applications. In comparison with the known limits, the 
extrapolated values appear somewhat too low, most likely related to viscous effects 
affecting primarily the case @ = ). The extrapolation amplifies the errors in the 
measured values. The results obtained in the double limit @ + 0 and p* +. 1 indicate a 
limit speed of propagation equal to that predicted based on shallow-layer theory (dam- 
break), i.e. Fr = 2 4 2  for the heavy-fluid front and Fr = 2/2 (receding wave) for the 
light-fluid front. 

The fundamental differences between the light- and heavy-fluid intrusions are 
confirmed by our visualization studies. The light-fluid front is elongated, smooth and 
generally loss free with a contour in agreement with Benjamin’s (1968) ideal theory. 
The heavy-fluid front is blunt and gives more evidence of mixing and other loss 
processes (hydraulic jumps). 

Certain parts of this work were undertaken as student projects in the period October 
1989 to December 1991. The experimental set-up was assembled by Dip1.-Ing. E. Lutz 
and Dip1.-Ing. I. Martin. Dip1.-Ing. S. Lamprecht helped develop the flow visualization 
system and carried out certain exchange-flow experiments including observations of 
the height of the intruding layers. The influence of gate opening time was investigated 
by Ing. ETH A. Gamboa. 

REFERENCES 
BATILL, S. M., MUELLER, T. J. 1981 Visualization of transition in the flow over an airfoil using the 

BENJAMIN, T. B. 1968 Gravity currents and related phenomena. J.  Fluid Mech. 31, 209. 
BRITTER, R. E. 1989 Atmospheric dispersion of dense gases. Ann. Rev. Fluid Mech. 21, 317. 
DRESSLER, R. F. 1952 Hydraulic resistance effect upon the dam-break functions. J.  Res. Natl Bur. 

Stand. 49, 211. 
FANNEL0P, T. K. & JACOBSEN, 0. 1983 Experimental and theoretical studies in heavy gas dispersion. 

In Atmospheric Dispersion of Heavy Gases and Small Particles (ed. G. Ooms & H. Tennekes). 
Springer. 

smoke-wire technique. AZAA J. 19, 340. 

FANNEL~P, T. K. & WALDMAN, G. D. 1971 Dynamics of oil slicks. AZAA J.  10, 506. 
FAY, J. A. 1969 The spread of oil on a calm sea. In Oil on the Sea. Plenum. 
FAY, J. A. 1982 Some unresolved problems of LNG vapor dispersion. MIT-GRI, LNG Safety and 

Research Workshop. Gas Research Institute, Chicago. 
HENDERSON, F. M. 1966 Open Channel Flow. Macmillan. 



Propagation of intrusion fronts of high density ratios 687 

KARMAN, T. VON 1940 The engineer grapples with nonlinear problems. Bull. Am. Math. SOC. 46,615. 
KELLER, J. J. & CHYOU, Y.-P. 1991 On the hydraulic lock-exchange problem. Z .  Angew. Math. Phys. 

42, 874 (referred to herein as K & C). 
KUNSCH, J. P., GROBELBAUER, H. P., BILLETER, L. & FANNELBP, T. K. 1991 Schwergasforschung an 

der ETH-Zurich Beitrag zum IV. Symp. on Schwere Gase und Sicherheitsanalyse Bonn, 26/27 .  
September 1991. 

LAMB, H. 1945 Hydrodynamics, 6th edn. Dover. 
MCQUAID, J. 1985 Objectives and design of the Phase I Heavy Gas Dispersion Trial. J. Huz. Mat. 

11, 1. 
ROSTEN, H. I., SPALDING, D. B. 1987 The PHOENICS Reference Manual. Wimbledon: CHAM Ltd. 
SIMPSON, J. E. 1987 Gravity Currents, in the Environment and the Laboratory. Ellis Horwood. 
STOKER, J. J. 1957 Water Waves. Interscience. 
YIH, C-S. 1965 Dynamics of Nonhomogeneous Fluids. Macmillan. 




